GCE

Further Mathematics A

Y535/01: Additional Pure Mathematics

Advanced Subsidiary GCE

2020 Mark Scheme (DRAFT)

[^0]OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

Question		Answer	Marks	AO	Guidance
1	(a)	$30(\bmod 31)$ or $-1(\bmod 31)$	B1 [1]	1.1	BC No other answer to be accepted Note: $13 \times 19=247=7 \times 31+30 \equiv 30(\bmod 31)$
	(b)	$13 x \equiv 9 \equiv 40 \equiv 71 \equiv \ldots \equiv 195$ so $x \equiv 15(\bmod 31)$ OR $x=31 n+15$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 1.1 \\ 1.1 \\ 2.2 \mathrm{a} \end{gathered}$	Repeatedly adding 31s arriving at a multiple of 13 $n \in \mathbb{Z}$ need not be stated
		Alternative method $13 \times 19 \equiv-1 \Rightarrow 13 \times(19 \times 13 \times 19) \equiv 1 \text { so }$ $19 \times 13 \times 19 \equiv 12$ is the reciprocal of $13(\bmod 31)$ Then $12 \times 13 x \equiv 12 \times 9$ $\Rightarrow x \equiv 15(\bmod 31)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		Method for finding reciprocal (inverse) of $13(\bmod 31)$ using (\mathbf{a}) Multiplication by the reciprocal correct answer
			[3]		

Question			Answer	Marks	AO	Guidance
2	(a)		$\begin{aligned} x y h & =1000 \Rightarrow h=\frac{1000}{x y} \\ A & =x y+2 x h+2 y h \\ & =x y+2000\left(\frac{1}{x}+\frac{1}{y}\right) \end{aligned}$	B1 B1 M1 A1 [4]	$\begin{gathered} \text { 3.1b } \\ 1.1 \\ 2.1 \\ 1.1 \end{gathered}$	soi Substitution of h expression from (a) (i) AG shown with supporting working
	(b)	(i)	$\frac{\partial A}{\partial x}=y+2000\left(\frac{-1}{x^{2}}\right) \text { and } \frac{\partial A}{\partial y}=x+2000\left(\frac{-1}{y^{2}}\right)$ Both p.d.s set to zero and solving $x=y=10 \times 2^{\frac{1}{3}}$	$\begin{gathered} \text { M1 A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[5]} \\ \hline \end{gathered}$	$\begin{gathered} 1.11 .1 \\ 1.1 \\ 2.1 \\ 1.1 \end{gathered}$	Partially differentiating A w.r.t. x or y; either correct $2^{\text {nd }}$ correct: FT $1^{\text {st }}$, with $x \leftrightarrow y$ $x^{2} y=x y^{2}=2000$ Both correct
		(ii)	Substg. x, y back into formula for $A ; 300 \times 2^{\frac{2}{3}}$	M1 A1 [2]	1.11 .1	Any exact equivalent e.g. $150 \times 2^{\frac{5}{3}}, 75 \times 2^{\frac{8}{3}}$ or awrt 476 BC
3	(a)		13 divides each pair of digits of $N(26,13,26,52)$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	2.4	Or applying a standard divisibility test
	(b)		$4 \mid 52$ (the final two digits of N) $\Rightarrow 4 \mid N$ $9 \mid$ digit-sum of $N(=27) \Rightarrow 9 \mid N$ Since $\operatorname{hcf}(4,9)=1,4 \times 9=36 \mid N$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 2.4 \end{aligned}$	Applying these two divisibility tests Must explain that 4,9 are co-prime as well as state the conclusion
	(c)		$\begin{aligned} & \text { By Euclid's Lemma, } \\ & 13 \mid 36 \times 725907 \text { and } \operatorname{hcf}(13,36)=1 \\ & \Rightarrow 13 \mid 725907 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{gathered} 2.4 \\ 2.2 \mathrm{a} \end{gathered}$	M for stating "Euclid's Lemma" (or full description of its result) Clear outline of necessary conditions

Question		Answer	Marks	AO	Guidance
5	(b)	$V_{1}=8 \Rightarrow A=5 \text { so } V_{n}=5 \times 2^{n}-n-1$ So $V_{20}=5242859$	M1 A1 [2]	3.1a 1.1	soi (or BC) accept exact value only.
6	(a)	$\mathbf{a} \times \mathbf{b}=-14 \mathbf{i}+2 \mathbf{j}+10 \mathbf{k}$ Use of formula Area $\Delta=\frac{1}{2}\|\mathbf{a} \times \mathbf{b}\|$ Area $\triangle O A B=5 \sqrt{3}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	A correct vector product (possibly BC) Including an attempt at a vector product Accept alternative exact equivalents (e.g. $\sqrt{75}$)
	(b)	$\begin{aligned} & (\mathbf{r}-\mathbf{a}) \times(\mathbf{b}-\mathbf{a})=\mathbf{0} \text { is the line through } A \text { and } B \\ & \text { so } \mathbf{c}=\mathbf{a}+\lambda(\mathbf{b}-\mathbf{a}) \text { or } \mathbf{c}=(1-\lambda) \mathbf{a}+\lambda \mathbf{b} \\ & \text { Area } \triangle O A C=\frac{1}{2}\|\mathbf{a} \times \mathbf{c}\|=\frac{1}{2}\|(1-\lambda) \mathbf{a} \times \mathbf{a}+\lambda \mathbf{a} \times \mathbf{b}\| \\ & =\frac{1}{2}\|\mathbf{0}+\lambda \mathbf{a} \times \mathbf{b}\| \\ & \text { Area } \triangle O A C=\frac{1}{2} \text { Area } \triangle O A B \Rightarrow \lambda= \pm \frac{1}{2} \\ & \text { giving } \mathbf{c}=-\mathbf{i}+3 \mathbf{j}-2 \mathbf{k} \text { or } \mathbf{c}=3 \mathbf{i}+\mathbf{j}+4 \mathbf{k} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 2.2 \mathrm{a} \\ \text { 3.1a } \\ 2.1 \\ \text { 3.1a } \\ \text { 1.1 } \\ 2.1 \end{gathered}$	From this point on, work may appear with numerical equivalent set-out Use of $\mathbf{a} \times \mathbf{a}=\mathbf{0}$
		Alternative method C is on the line $A B$ Common "base" $O A$ means that C is either the internal or the external bisector of $A B$ i.e. $\mathbf{c}=\frac{1}{2}(\mathbf{a}+\mathbf{b})$ or $\frac{1}{2}(3 \mathbf{a}-\mathbf{b})$ giving $\mathbf{c}=-\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}$ or $\mathbf{c}=3 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$	B1 M1 A1 M1 A1 A1		(For half the "height") At least one must be attempted Both correct
			[6]		

Question			Answer	Marks	AO	Guidance
7	(a)	(i)	E.g. $T_{0}=100000$ is the initial population as given $T_{k+1}=(1-r) T_{k}$ because a death-rate of r means that 1 $-r$ of the population is left after each week. $0 \leq k \leq 12$ because the model given is only valid for twelve weeks.	B1 B1 B1 [3]	$\begin{aligned} & 1.1 \\ & 3.3 \\ & 2.1 \end{aligned}$	
		(ii)	$\begin{aligned} & T_{12}=a^{12} T_{0} \\ & 1-r=\sqrt[12]{0.00355}=0.62496 \ldots \Rightarrow r=0.375 \text { to } 3 \text { s.f. } \end{aligned}$	M1 A1 [2]	$\begin{gathered} \text { 3.1b } \\ 1.1 \end{gathered}$	$\begin{aligned} & a=r \text { or } 1-r \\ & \mathbf{A G} \end{aligned}$
	(b)	(i)	After 16 weeks, the number of frogs is $0.62496 \ldots{ }^{16} \times 100000=54.154 \ldots$ So $54.154 \ldots \times p \geq 30$ $\Rightarrow p \geq \frac{30}{54.154 \ldots}=0.5539 \ldots=0.554 \text { to } 3 \mathrm{sf}$	B1 M1 A1 [3]	$\begin{gathered} 3.5 c \\ 3.1 b \\ 1.1 \end{gathered}$	Allow use of ' T_{16} '. Or, starting again $0.62496 \ldots{ }^{4} \times 355$ For 'their population' $\times p \geq 30$
		(ii)	E.g. The same weekly death-rate factor continues unchanged. The females will all lay eggs. Tadpoles instantly change to frogs and lay eggs at exactly the same time.	B1 [1]	3.3	
	(c)		E.g. 30 surviving females would produce 75000 eggs, so the population is smaller than it was to start with, so each 'round' will result in smaller and smaller populations.	B1 [1]	3.5a	No greater detail of analysis is required beyond "they would appear to be dying out so the figure of 30 in the model is not a good one"

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]: This is a DRAFT mark scheme. It has not been used for marking as this paper did not receive any entries in the series it was scheduled for. It is therefore possible that not all valid approaches to a question may be captured in this version. You should give credit to such responses when marking learner's work.

